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We propose a Landau–de Gennes variational theory fit to simultaneously describe isotropic, nematic,
smectic-A, and smectic-C phases of a liquid crystal. The unified description allows us to deal with systems in
which one, or all, of the order parameters develop because of the influence of defects, external fields and/or
boundary conditions. We derive the complete phase diagram of the system, that is, we characterize how the
homogeneous minimizers depend on the value of the constitutive parameters. The coupling between the
nematic order tensor and the complex smectic order parameter generates an elastic potential which is a
nonconvex function of the gradient of the smectic order parameter. This lack of convexity yields in turn a loss
of regularity of the free-energy minimizers. We then consider the effect on an infinitesimal second-order
regularization term in the free-energy functional, which fixes the optimal number of defects in the singular
configurations.
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I. INTRODUCTION

The liquid crystalline state of matter has been described
and studied in deep detail over the past century. The pioneer-
ing works of Oseen �1�, Zocher �2�, and Frank �3� gave birth
to the first theory of the nematic liquid crystal phase. In it,
the microscopic configuration is described through a unit
vector n, the director, parallel to the molecular orientation. A
step forward was accomplished by de Gennes �4�, who gen-
eralized the notion of director and introduced the nematic
order tensor, which provides information on both the mo-
lecular orientations and the degree of ordering. The order-
tensor theory succeeded in describing not only the nematic
distortions but also the isotropic-nematic �I-N� phase transi-
tions and cores of singular defects.

The onset of a smectic-A �Sm-A� phase in a nematic liq-
uid crystal is described by a rise of a periodic modulation in
the mass density of molecules in the liquid, along the direc-
tor direction �5,6�. By exploiting an analogy between smectic
liquid crystals and superconductors, de Gennes �7� proposed
an independent, complex order parameter that allows for the
description of nematic-smectic phase transitions. In a
smectic-C �Sm-C� phase, the axis of this translational sym-
metry breaking is not parallel to the director, so that a
2-director theory was originally proposed to identify such
phases �8�.

Depending on the choice of the order parameters, differ-
ent free energy functionals have been proposed over the
years. All possible elastic terms depending on the nematic

order tensor have been analyzed by Longa and co-workers
�9�. The interaction between the nematic director and the
complex smectic order parameter was first described by
Chen and Lubensky �10–12�. These interaction terms have
found many applications �13–16�. On the other hand, the
2-director variational theory has been put forward by Leslie
and co-workers �17,18�, and proven useful in several appli-
cations as well �19–21�.

Direct I–Sm-A transitions have been reported �22,23�.
Tricritical points exist both in the N–Sm-A–Sm-C �24,25�
and in the I–Sm-A–Sm-C transitions �26�. Even direct
I–Sm-C transitions have been detected �27�. This abundant
experimental evidence of the existence of all possible transi-
tions between isotropic, nematic, and smectic phases pushes
towards a unified theory, in terms of a free energy functional
constructed on the nematic order tensor and the complex
smectic order parameter.

The need to construct a nematic-smectic theory based on
the order tensor arises also from symmetry reasons. Indeed,
the free-energy potentials which couple the nematic director
and the complex smectic order parameter are not separately
invariant under the reflection of the director and the smectic
layers, but only under the simultaneous reflection of both
degrees of freedom. The correct symmetry is automatically
restored when the order tensor is used as a building block for
the free-energy potential. The first attempt to couple the
nematic order tensor with the complex smectic order param-
eter was carried out by Lelidis and Durand �28�, that re-
stricted their analysis to uniaxial order tensors with constant
eigenvectors, and planar smectic layers, orthogonal to one of
the eigenvectors. A more complete phenomenological theory,
which covers the transitions between the isotropic, nematic,
and smectic-A phases, has been proposed by Brand and
co-workers �29,30�.
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More recent studies accomplish the task of including
smectic-C phases in the Landau theory �31,32�. Such theo-
ries include finite terms which depend on the second deriva-
tives of the smectic order parameter in order to account for
the additional biaxial symmetry. However, the presence of
second-order gradient terms has nontrivial implications on
the nature of the equilibrium differential equations, which
consequently become fourth order. From the physical point
of view, second-gradient terms directly penalize the curva-
ture of the layers, and are widely used in shell theories
�33,34�. Inserting them in the free-energy density would be
necessary if the smectic layers were replaced by real vesicles
hosting the liquid crystal molecules �35�. Second-gradient
terms modify the boundary conditions to be applied on the
smectic degrees of freedom as well. For example, a free-
energy functional depending only on the first gradient of the
smectic order parameter allows fixing the boundary layers to
be parallel to the external surface. To include second-order
derivatives in the free energy amounts to accepting also the
mathematical possibility of fixing the boundary layer spacing
at will.

In this paper we show that it is possible to develop a
consistent phenomenological Landau theory, based only on
the first gradients of the order parameters. Isotropic, nematic,
smectic-A, and smectic-C phases may be reached as the tem-
perature is lowered even in the absence of any second-order
term in the free-energy functional. Quadratic terms depend-
ing on the second derivatives may be replaced by quartic
terms depending on the first derivatives of the smectic order
parameters. This choice is supported by the observation that
the two-component vector order parameter � �36�, which an-
nounces the onset of the smectic-C phase, is indeed quadratic
in the gradient of the complex smectic-A order parameter.
Thus, terms quadratic in � give rise to terms depending on
the fourth power of the smectic order parameter. The first
part of this paper is devoted to the careful analysis of the
phase portrait associated to the proposed free-energy
functional.

The other side of the first-order elastic potential we pro-
pose in this work is that it may yield to a lack of convexity of
the elastic potential as a function of the gradient of the smec-
tic order parameter. In turn, such loss of convexity may give
rise to singular minimizers, or even to the nonexistence of
minimizers �37,38�. This, however, is not a shortcoming of
the model but an added benefit. Indeed, edge and chevron
singular structures in smectic liquid crystals have been both
observed experimentally �39–42�, and studied theoretically
within the nematic-director theory �13,14,43–46�.

We show that the catastrophic replication of defects can
be avoided with the insertion of an infinitesimal curvature
penalty in the free-energy functional. Examples of problems
with nonconvex potentials and higher-order regularizing
terms include martensitic phase transformations �47�, micro-
magnetics �48�, and the Ginzburg-Landau model of nucle-
ation �49�. Two well-known prototype models for a scalar
order parameter u are the Ginzburg-Landau energy �50�

�
�

�u2 − 1�2 + �2��u�2, �1�

and the Aviles-Giga energy �51�

�
�

���u�2 − 1�2 + �2��2u�2. �2�

The former is a model of vortex nucleation. The latter de-
scribes convective pattern formation and thin films. In par-
ticular, it is a special case of the more general potential we
propose in the present paper. One observed trend in such
problems is that energy minimizers may develop increas-
ingly involved microstructures as �→0+. This fact arises in
our calculations as well.

Order parameters. Nematic and smectic phases reflect
symmetry breaking related to different degrees of freedom.
Nematic ordering refers to the local probability distribution
of molecular orientations fx���, with � the unit vector along
the molecular axis. More precisely, the isotropic-nematic
transition is defined as the point at which the symmetric,
traceless nematic order tensor �52�

Q�x� ª �
S2

� � �fx���da −
1

3
I �3�

becomes non-null �I is the identity tensor�. The nematic or-
der tensor Q is, respectively, labeled as isotropic, uniaxial, or
biaxial, when its eigenvalues are all equal, two equal but
different from the third, or all three different. Frequently, the
thermodynamic Landau–de Gennes potential �LdG, that we
shall introduce below, forces the nematic order tensor to be
uniaxial. When this is the case, the general form it may
assume is

Quni�x� ª s�x��n�x� � n�x� −
1

3
I� , �4�

where s��− 1
2 ,1� is the nematic order parameter and n is the

director. If the liquid crystal is made up of elongated mol-
ecules, �LdG is minimized when the degree of orientation
assumes a positive value s0. In this case, n coincides with the
eigenvector of Q associated with the higher eigenvalue.

Smectic ordering deals with the distribution in space of
the molecular mass centers. In a smectic phase, the mol-
ecules tend to organize themselves in a layered structure,
whose skeleton need not necessarily be a family of parallel
planes. The complex smectic order parameter �=�ei� mea-
sures the inhomogeneity of the spatial molecular density. The
non-negative modulus � yields the amplitude of density
modulation. The level sets of the real function � complete
the description by identifying the position of smectic layers.
Thus, �� is everywhere parallel to the layer normal, while
���� is proportional to the inverse of the layer spacing.

The character of a smectic phase depends on the mutual
arrangements of nematic and smectic variables. When the
nematic order tensor is uniaxial, and a director can be de-
fined, a smectic phase is labeled as Sm-A or Sm-C, depend-
ing on whether the director is parallel to the layer normal, or
not. However, in the general biaxial case a unique director is
not available, and a more general phase definition is re-
quired. This is not a scholastic objection, since Sm-C phases
are intrinsically biaxial due to the tilt of layer normal break-
ing the symmetry among the directions orthogonal to n. To
overcome this obstacle, we can resort to the earlier remark in

BISCARI, CALDERER, AND TERENTJEV PHYSICAL REVIEW E 75, 051707 �2007�

051707-2



which we linked the director with one of the eigenvectors of
the nematic order tensor. In terms of Q and �, the order
parameter that recognizes whether the layer normal is an
eigenvector of Q is given by �ªQ��∧��. Thus, to con-
struct a phenomenological Landau theory that may enforce
Sm-A–Sm-C transitions we must include in the free-energy
functional an interaction term

�AC = f � · � = f �Q�� ∧ ���2. �5�

Negative values of the coupling constant f enforce Sm-C
phases. The potential �5� requires the presence in the elastic
free energy of a new term proportional to ����4, to ensure
that the complete functional remains bounded from below. In
Sec. II we describe all terms entering the free-energy func-
tional, while Sec. III is devoted to the analysis of the variety
of phase transitions predicted by this model. We then move
to the analysis of the singular configurations allowed by the
nonconvexity of the free-energy density. Sections IV and V
address the onset of chevron and edge dislocations, respec-
tively. In these sections we discuss the key role played by the
infinitesimal regularizing second-order term.

II. FREE-ENERGY FUNCTIONAL

We consider a liquid crystal confined in a three-
dimensional domain �. The order parameters Q :�→A, and
� :�→C describe the microscopic state of the material. The
codomain A of the nematic order tensor is the set of all
traceless, symmetric tensors Q, with spectrum sp Q
��− 1

3 , 2
3
�. Given a point Po��, we let

��Po� ª Q�Po����Po� ∧ ���Po� , �6�

and we label the liquid crystal as

isotropic if Q = 0 and � = 0,

nematic if Q � 0 and � = 0,

smectic-A if Q,� � 0 and � = 0 ,

smectic-C if Q,� � 0 and � � 0 . �7�

For the sake of brevity, we limit our analysis to achiral,
and nonpolarized liquid crystals, and we define the following
free-energy functional:

F�Q,�� ª �
�

��el,n��Q,Q� + �LdG�Q� + �el,sm����

+ �sm����� + �n,sm
�1� �Q, ���� + �n,sm

�2� �Q,����dv .

�8�

The complete free-energy functional contains the following
terms.

�i� The nematic elastic energy �el,n has been analyzed in
detail elsewhere �9�. It is quadratic in �Q, and for our pur-
poses we only need to recall that it is minimized when Q is
uniform, so that �Q=0.

The Landau–de Gennes potential is given by �52�

�LdG�Q� ª a tr Q2 − b tr Q3 + c tr Q4. �9�

The material parameter c is positive to keep the functional
bounded from below. The constant b is positive in all liquid
crystals made up of rodlike molecules, while a changes sign
when the isotropic configuration Q=0 becomes unstable.
With the choices above, the minimum of the potential �9� is
attained when the nematic is uniaxial, i.e., when two of the
eigenvalues of Q coincide. However, uniaxiality may be de-
stroyed by means of suitable external fields or boundary con-
ditions �53–55�.

�ii� The elastic contribution arising from �� must contain
a fourth-power term in order to balance the term �n,sm

�2� we
introduce below. Thus,

�el,sm���� ª b1����2 + b2����4, �10�

where at least the elastic constant b2 must be positive.
The smectic potential �sm drives the onset of the smectic

phases,

�sm����� ª ã���2 + c̃���4. �11�

The material parameter c̃ is forced to be positive, while ã
may change sign close to the smectic transitions.

�iii� The nematic-smectic interaction consists in two
terms, since the nematic order is coupled both with the smec-
tic degree of order ��� and with the gradient ��, which keeps
information on layer direction and spacing. More precisely,
we choose

�n,sm
�1� �Q, ���� = − b̃���2 tr Q2. �12�

The coupling constant b̃ may be positive or negative. A posi-
tive choice implies that the onset of any order �either nematic
or smectic� is favored when one of the two order parameters
is already non-null. Finally, we include two terms in �n,sm

�2� :

�n,sm
�2� �Q,��� = eQ�� · �� + f� · � , �13�

where � is defined as in �6�. If e�0 the first term is mini-
mized when �� is parallel to the eigenvector of Q corre-
sponding to the higher eigenvalue, that is in a Sm-A phase.
Similarly, negative values of f promote Sm-C phases.

Remark. The potential �10� is invariant under rotations of
the nematic layers, while it should be invariant under simul-
taneous rotations of both the smectic layers and the nematic
molecules. Indeed, when � and the nematic director n are
chosen as order parameters �10�, only the covariant gradient
Dn= ��− iqn� may enter the elastic terms depending on the
smectic order parameter. This important symmetry feature is
naturally contained in our present description, as one can see
by replacing �� in �10� by DQ�= �I−Q���. Terms resulting
from such replacement are already represented in �13�. In-
deed, let us consider
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�DQ��2 = ��� − Q���2 = ����2 − 2Q�� · �� + �Q���2.

�14�

The first term is the b1 term in �10�, while the second is the
e term in �13�. The final term in �14� is contained within the
f term in �13�, since

� · � = �Q�� ∧ ��� · �Q�� ∧ ���

= ����2�Q���2 − �Q�� · ���2. �15�

Finally, the coefficients in front of the interaction terms can
be varied independently, since it is the very presence of an
interaction term that ensures that the global potential will be
invariant only with respect to contemporary rotations of the
involved order parameters. Therefore, even at this early
stage, we may conclude that the free-energy functional �8�
reflects the necessary symmetries in a more general way.

III. PHASE TRANSITIONS

In this section we analyze the uniform minimizers of the
free-energy functional �8�. In order to shorten our presenta-
tion, we focus on two particular problems. First, we focus on
the transitions from the isotropic phase �either I-N, I–Sm-A,
or I–Sm-C�. Then, we consider the situation in which
uniaxial nematic order is already established, and determine
the critical values of the material parameters that give rise to
the onset of smectic phases. In both cases, we consider uni-
form configurations in which

Q�x� 	 Q0 and ��x� = �0eiq0·x. �16�

When we replace �16� in �8�, the result is

F�Q0,�0,q0� = V�0�Q0,�0,q0� , �17�

where V=Vol��� and

�0�Q0,�0,q0� = a tr Q0
2 − b tr Q0

3 + c tr Q0
4 + b1�0

2q0
2 + b2�0

4q0
4

+ ã�0
2 + c̃�0

4 − b̃�0
2 tr Q0

2 + e�0
2Q0q0 · q0

+ f�0
4�Q0q0 ∧ q0�2. �18�

A. Isotropic transitions

Let us assume that the system is close to the isotropic
phase. In this case, both �0 and �Q0� are small, and the fol-
lowing transitions may arise.

1. Isotropic-nematic transitions

If �0=0, Eq. �18� yields

��0��0=0 = a tr Q0
2 − b tr Q0

3 + c tr Q0
4, �19�

which is the standard Landau–de Gennes potential for the
phenomenological first-order nematic transition. If a�

3
32

b2

c ,
it possesses a unique stationarity configuration, the isotropic
state. When a�

3
32

b2

c two new stationary configurations ap-
pear, characterized by

s = s± =
3b ± 
3�3b2 − 32ac�

8c
. �20�

Since b	0 for rodlike materials, the higher value s+

becomes the absolute minimizer when a�
1

12
b2

c , while the
isotropic state becomes unstable below the super-cooling
temperature TSC, that is, when a�0. One usually defines the
nematic-isotropic temperature TNI as the temperature at
which a*= 1

12
b2

c , while the width of the transition hysteresis
is, obviously, in the range 0�a�

3
32

b2

c .

2. Isotropic–smectic-A transitions

If Q0=0, the potential �18� reads as

��0�Q0=0 = b1�0
2q0

2 + b2�0
4q0

4 + ã�0
2 + c̃�0

4. �21�

The nontrivial stationary points of �21� are given by

�0
2 = −

ã

2c̃
and q0

2 =
b1

ã

c̃

b2
. �22�

Since b2 and c̃ are positive, a smectic phase may arise only
provided both b1 and ã are negative. In particular, both b1
and ã must vanish at the transition, in order to keep inverse
layer spacing q0 finite. Thus, the smectic phase may arise
directly from the isotropic one if both b1 and ã vanish at the
temperature TNI defined above.

3. Isotropic–smectic-C transitions

Let us assume that a= 1
12

b2

c , ã=0, and b1=0, so to guaran-
tee that we directly pass from the isotropic to a smectic
phase. We represent the resulting smectic wave vector q0 in
the principal basis of Q as q0=q0�cos 
e1+sin 
 cos �e2

+sin 
 sin �e3�, and denote the corresponding eigenvalues of
Q as

�1 =
2

3
s0, �2 = −

1

3
s0 + , �3 = −

1

3
s0 −  , �23�

with 0��s0, so that the eigenvalues are numbered in
decreasing order. The potential �18� now becomes

�0 =
1

12

b2

c
tr Q0

2 − b tr Q0
3 + c tr Q0

4 + b2�0
4q0

4 + c̃�0
4

− b̃�0
2 tr Q0

2 + e�0
2Q0q0 · q0 + f�0

4�Q0q0 ∧ q0�2

=
1

18c
s2�b − 2cs�2 +

1

6c
2�b2 + 12bcs + 8c2s2�

+ 24c + b2�0
4q0

4 + c̃�0
4 −

2

3
b̃�0

2�s2 + 32�

+ e�0
2q0

2�s0 cos2 
 −
1

3
s0 +  sin2 
 cos 2��

+ f�0
4q0

4 sin2 
�cos2 
 sin2 ��s0 + �2

+ cos2 
 cos2 ��s0 − �2 + 2 sin2 
 sin2 2�� . �24�

The uniaxial Sm-A solution 
=0, with =0, s=s+=b / �2c�,
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and �0, q0 as in �22�, is always a stationarity point of �24�.
However, it becomes unstable if

f �
e

�0
2q0

2s+
¬ fcr. �25�

If the coupling constant f lies below the threshold fcr, the
I–Sm-A transition becomes a direct I–Sm-C phase transi-
tion. The presence of the vanishing quantity �0

2q0
2 in the de-

nominator of �25� implies that fcr→−�, if the material pa-
rameter e is strictly negative. This implies that no direct
I–Sm-C transition may arise if the e term is explicitly pro-
moting the Sm-A phase.

To summarize the results we can state the following:

�i� The isotropic phase becomes unstable against nematic
configurations at the temperature TSC at which a vanishes.
We have also identified the temperature TNI�TSC at which
the isotropic and the nematic phases possess the same free
energy.

�ii� A smectic phase may be directly reached from the
complete disorder if also both b1 and ã vanish at TNI �that
becomes then TSI�.

�iii� The smectic phase thus obtained is indeed a tilted
Sm-C phase if any of the following two cases arises at the
transition temperature: either e�0 �any f�, or e=0 and f
� fcr.

B. Nematic transitions

Let us now focus on a physically different situation.
Imagine that the nematic liquid crystal order is well estab-
lished, with s=s+ and =0. If we again denote by 
 the angle
that q0 determines with the director e1, the potential �18� can
be written as

�0 = �LdG�s+� + ã�0
2 −

2

3
b̃�0

2s+
2 + c̃�0

4 + b1�0
2q0

2 + b2�0
4q0

4

+
1

3
e�0

2q0
2s+�3 cos2 
 − 1� + f�0

4q0
4s+

2 cos2 
�1 − cos2 
� .

�26�

Just as above, the onset of Sm-A order is characterized by the
simultaneous vanishing of the coefficients of �0

2 and �0
2q0

2,
when 
=0. Consistently, we define the critical temperature

TNA such that ã− 2
3 b̃s+

2 = â�T−TNA� and b1+ 2
3es+= b̂�T−TNA�,

where â and b̂ are positive. In other words, we are assuming
that only ã and b1 are temperature dependent, while all the
other constitutive parameters entering the smectic part of the
free-energy density do not vary significantly with the tem-
perature in the vicinity of TNA. In reality, this probably means
that the physical parameters ã and b1 are not independent—
but this is not a relevant point for us presently. In particular,
we assume that the parameters e , f are both negative. In this
way the free-energy term �n,sm

�2� in �13� is given by the sum of
two competing terms. The former pushes towards a Sm-A
phase, while the latter is minimized in the Sm-C phase.

To better interpret how the optimal values of the order
parameters �0, q0, 
 depend on the material constants, we
further introduce the following notations:

qsm
2

ª

b̂c̃

âb2

, �M
2 =

âTNA

2c̃
,

TAC = TNA�1 −
e

fs+qsm
2 �M

2 � . �27�

We remark that TAC which, as we show below, is the tem-
perature of the Sm-A–Sm-C transition, is lower than TNA as
long as both e and f are negative. Furthermore, TAC�0 pro-
vided f �e / �s+qsm

2 �M
2 �. Thus, the material parameter f must

be sufficiently negative in order to be able to promote a
Sm-C phase at a finite temperature. We finally define the
dimensionless parameter

� ª −
4b2

fs+
2 . �28�

The coefficient of the terms depending on the fourth power
of ��, that is on �0

4q0
4, must be positive whatever the degree

of nematic order and the tilt angle 
. A little algebra shows
that this is certainly the case if ��1. With the choices above
it is straightforward to prove that the minimizers of �26� are
the following.

�N� If T	TNA, the optimal value is �=0, so that no smec-
tic order arises.

�Sm-A� If TAC�T�TNA the free-energy minimizers are
the following:

�0 = �M
1 −
T

TNA
, q0 = qsm, 
 = 0. �29�

The Sm-A phase arises with a second-order transition with
the layer spacing given by the first of Eqs. �27�.

�Sm-C� When T�TAC the minimizers change as follows:

�0 = �M
1 −
T

TNA
,

q0 = qsm
1 +
TAC − T

�TNA − T��� − 1�
, �30�

that is, the smectic layer spacing decreases, and

cos 2
 =
�TNA − TAC��� − 1�

TAC − T + �TNA − T��� − 1�
. �31�

Figures 1–3 illustrate the above results. Figure 1 displays
both the smectic intensity � and the layer spacing, inversely
proportional to q0, as a function of the temperature, in both
smectic phases. The amplitude of the smectic density wave,
�0 does not depend on the constitutive parameter � and it is
smooth across the Sm-A–Sm-C transition. In contrast, the
layer spacing d=2� /q0 reflects the second-order character of
the Sm-A–Sm-C transition at the temperature TAC. More-
over, when � is large, for instance for lower nematic order
s+, the layer spacing contraction in the Sm-C phase tends to
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disappear, which yields interesting results, as we will discuss
below.

Figure 2 shows the behavior of the tilt angle 
, which
emerges in the Sm-C phase, as a function of the temperature
and �. The tilt angle does not exhibit a very significant de-
pendence on �, however, the rate at which the maximum
value of 
 is approached is higher for smaller �, that is when
the nematic ordering is greater. In all cases, the zero-
temperature limit of 
 is close to �but below� � /4. This result
should be expected, since the definition of the smectic-C
order parameter shows that � maximizes its modulus when it
is oriented at the greatest possible angle with respect to all
the eigenvectors of the order tensor Q. When this latter is
uniaxial, the maximum value of � is attained when the angle
between the director and the layer normal approaches �

4 . In-
deed, were 
 to exceed such limiting value, the layer normal
would approach one of the eigenvectors of Q different from
the director.

The layer compression on increasing tilt, shown in Fig. 1,
is characteristic of most Sm-C materials. The typical expla-
nation of such effect is normally given in geometrical terms

as follows. Let us assume that the layer spacing d=2� /q0 is
determined by the projection of the molecular length � into
the layer normal direction. In particular, in the Sm-A phase
both quantities would be expected to coincide, dA� �and
we observe the constant layer spacing above TAC�. In the
Sm-C phase, the tilt angle 
 would imply d� cos 
. Thus,
it is interesting to check whether the ratio d / cos 

�1/ �q0 cos 
� remains approximately constant throughout
the whole smectic regime. Figure 3 displays how such trans-
verse layer spacing depends on the temperature and the di-
mensionless parameter �. It happens to remain constant only
when �=2, which gives an interesting estimate of the typical
value the dimensionless parameter � should attain. When �
is greater �lower� than 2, the layer spacing is greater �lower�
than its geometrical estimate. We remark that there are sev-
eral experimental examples of materials that do not obey the
geometrical estimate for the Sm-C layer contraction. In fact,
there are materials for which the layer spacing remains sub-
stantially constant across the Sm-A–Sm-C transition. Figure
1 shows that this effect, named after de Vries �56,57�, is to be
expected in materials for which � greatly exceeds the critical
value 2 identified above. Equation �28� shows that the mag-
nitude of � depends essentially on the balance between the
purely smectic elastic constant b2 and the nematic-smectic
coupling constant e. It is then of no surprise that the geo-
metrical estimate that relates the layer spacing to the director
length fails when the coupling between the nematic and
smectic order parameters becomes negligible.

The above results are summarized qualitatively in Fig. 4.
Several phase diagrams have been reported in the literature
by varying the external temperature and the composition of
liquid crystal mixtures. For the sake of simplicity we have
indicated −f in the horizontal axis of Fig. 4. Nevertheless, we
must imagine that moving along the horizontal axis corre-
sponds to varying the molecular structure of the system, thus
varying all constitutive parameters, and in particular the tran-
sition temperatures TNI , TNA, and the smectic parameters
e , f . In all cases, no Sm-C phase can be identified if f is not
sufficiently negative �see Eq. �27� and discussion below�. A
tricritical point N–Sm-A–Sm-C arises if TNA�TNI when e
vanishes �see Fig. 4, left-hand side�. Indeed, the vanishing of
the parameter e implies TAC=TNA �see again Eq. �27��. This
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FIG. 1. �Color online� Smectic phase parameters as functions of
the reduced temperature in the realistic case TAC=0.9TNA. The
dashed curve represents the reduced smectic intensity �0, in units of
�M. Continuous lines show the layer spacing, 2� /q0, in units of qsm.
The displayed values of � are 1.05, 1.25, 2.5, 5.0, labeled on the
plot.
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FIG. 2. �Color online� Tilt angle 
 as a function of the reduced
temperature for the same TAC and � values as in Fig. 1. The tilt
angle depends only slightly on the constitutive parameter �.
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FIG. 3. �Color online� Dimensionless transverse layer spacing
�=qsm/ �q0 cos 
� for the same TAC and � values as in Fig. 1.
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is the case reported in �24,25�, where the horizontal axis

represents the concentrations in a mixture of 7̄S5 and 8̄S5.
On the contrary, a tricritical point I-N–Sm-A occurs if TNA
=TNI when the parameter e is still negative �see Fig. 4, right-
hand side�. Such a tricritical point has been observed by
plotting phase diagrams for 7CB–10CB systems �58�.
Clearly, in real systems there is no guarantee that we are
allowed to push the smectic parameter f below the critical
value �25� that allows for direct I–Sm-C transitions.

IV. CHEVRON STRUCTURES IN SMECTIC-C PHASES

The aim of describing Sm-C phases has led us in Sec. II
to defining the order parameter �, which depends quadrati-
cally on ��, and thus to construct a free-energy density
which depends on ����4. In Sec. III we have shown that in
smectic phases the coefficient b1 multiplying ����2 turns
negative. This fact induces a lack of convexity in the overall
free-energy density as a function of ��. However, we stress
that this aspect is not to be related to our aim of constructing
a nematic-smectic theory based on the order tensor. Indeed,
similar problems are already found within the n-� descrip-
tion �59�.

One of the most interesting and well-studied patterns that
originate from the lack of convexity of the free-energy den-
sity are the chevron structures in Sm-C materials. Smectic
chevrons have been experimentally detected �40�, and ana-
lyzed theoretically within the n-� model �13,14�. To better
understand these singularities we consider the simple book-
shelf geometry illustrated in Fig. 5. It represents the Sm-C
cell y� �0,d�, in which homeotropic anchoring is enforced at
the surfaces. In the left-hand panel, the anchoring is obeyed,
but wall defects locally break the smectic ordering. To be
more precise, if we let 
0 be the angle Sm-C tilt angle, the
induced wall defects will be separated by a distance d / tan 
0
along the x direction. On the contrary, the right-hand panel
shows a situation in which the homeotropic anchoring has
been broken, but the normal to the smectic layers does not
exhibit any jump discontinuity.

If we were to compare the energies of the configurations
represented in Fig. 5, the chevron structure would always
win, since the homogeneous nematic pays no anchoring en-

ergy, and the discontinuities in the smectic normal are ener-
getically free as well. However, it would be impossible to
identify uniquely the energy minimizer, since the chevrons
could replicate at will, thus inducing any number of discon-
tinuities in the layer normal.

There are several ways to overcome the degeneracy in-
duced by the lack of convexity of the free-energy density
�60�. The most physically convincing remedy consists in in-
troducing a small energy penalty depending on the layers’
curvature, and thus on the second derivatives of the smectic
order parameter �. The simplest choice is given by

�reg = D�DQDQ��2 = D��� − Q���� − Q����2, �32�

where we have now directly replaced the gradients by cova-
riant derivatives in order to avoid introducing further
nematic-smectic interaction terms. We now show that the
presence of the regularizing term �32� fixes the size of the
regions in which the chevrons round their edges, and intro-
duces a fixed energy penalty per chevron.

Let us consider the chevron structure illustrated in Fig. 5
�left-hand side�, and more precisely the slab A= ��x �
�d / �2 tan 
0��. The nematic order tensor is uniform Q
=s+�ey � ey − 1

3I�. The smectic intensity � is constant, and we
regularize the chevron by smoothing its sharp edges in a
region of characteristic size � �to be determined�. When this
is the case, the phase gradient within the gray region is given
by

���x,y� = �q0�− sin 
0ex + cos 
0ey� if x � − � ,

q0�x/� sin 
0ex + cos 
0ey� if �x� � � ,

q0�sin 
0ex + cos 
0ey� if x 	 � ,
�

�33�

where q0 is the preferred layer spacing. The potential �reg
vanishes outside the chevron. Within this latter, an easy cal-
culation allows to show that it contributes to the total free
energy with a factor

�
A

�regdxdy 
2Dd

�
�0

2q0
2��s+�sin2 
0, �34�

where ��s+�ª �1+ 1
3s+�4. On the other hand, the chevron pos-

sesses an energy cost due to the layer mismatch and the
imperfect alignment of the smectic-C molecules. The excess
free energy stored in the gray region is given by
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FIG. 4. Qualitative phase diagram of a liquid crystal undergoing
several transitions. High values of the smectic parameter f hinder
the onset of the Sm-C phase. When f becomes sufficiently negative
a Sm-C phase arises at low temperatures. Eventually, the tilted
phase may be reached directly from the nematic or from the isotro-
pic state. See the text for a more detailed description of the different
tricritical points that may exist.
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FIG. 5. Left-hand side: Snapshot of a chevron disclination in a
bookshelf Sm-C liquid crystal. The chevron occupies the gray re-
gion, where the layer normal performs a 2
0 turn. Right-hand side:
The chevron disclination can be avoided by breaking the homeotro-
pic anchoring at the surface. In both cases the angle the nematic
molecules determine with the layer normal is 
0= �

6 .
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��
A

�dxdy 
16

15
b2d�0

4q0
4� sin4 
0. �35�

Minimizing with respect to � the sum of the two preceding
contributions allows to determine the optimal size of the
transition region

�opt =
15��s+�
8

D

b2

1

�0q0 sin 
0
. �36�

Equation �36� confirms that the chevron structure is related
to the tilted character of the Sm-C phase, as the size of the
transition region would diverge were we approaching the
Sm-A phase, �opt�
0

−1 as 
0→0. We remark that the power
law ruling such singular behavior confirms the previous the-
oretical calculations performed within the nematic-director
theory �14�. In view of Eq. �36� the total energy cost of a
singular wall of height d turns out to be

�F�1chvrn� = 8
 2

15
��s+�
Db2d�0

3q0
3 sin3 
0. �37�

Moreover, in a region of length Lx there is a need for at least
a chevron every �x=d / �2 tan 
0�. Thus, a chevron structure
as the one illustrated in Fig. 5, left-hand side, has an energy
cost

�F�all� = 16
 2

15
��s+�
Db2Lx�0

3q0
3 tan 
0 sin3 
0. �38�

This energy is to be compared with the energy necessary to
break the homeotropic anchoring at the boundary �see Fig. 5,
right-hand side�. If we assume for this latter the simple
Rapini-Papoular form �61�

�F�weak��
� = WLxs+
2 sin2 
 �39�

we arrive at the result that the chevron structure is stable
whenever

W 	 Wcr = 16
2��s+�
15s+

2

Db2�0

3q0
3 tan 
0 sin 
0. �40�

V. EDGE DISLOCATIONS IN SMECTIC-A PHASES

As a second example to illustrate the role of the second-
gradient term �reg in the energy, we now analyze the onset of
edge dislocations in smectic-A bookshelf geometry. We pre-
scribe the intensity of the Burger’s vector of the configura-
tion, and we prove that the higher order energy term controls
the number of edge dislocations that combine to construct a
defect of the prescribed total charge. We estimate the radius
of the dislocation cores as well.

Since the regularizing term consists of second derivatives
of the complex wave function �, it will have the most influ-
ence in configurations where �, and in particular its phase
function �, exhibits discontinuities. In smectic liquid crystals
this is the signature of a dislocation, and the magnitude of
the jump discontinuity of � is related to the local loss or gain
of layers. More precisely, the quantity measuring the strength

of the dislocation, from the point of view of how many lay-
ers are created or lost across the core, is the Burger’s vector.

In a bookshelf geometry, edge dislocations may appear
due to a mismatch between two different wave numbers, one
�q� related to the thickness of the undistorted smectic book-
shelf bulk, and the other �qs�q� imprinted on the boundary
�45�. In general, any source of layer frustration �such as dust
particles and defects� may cause dislocations in the material.

Let us now briefly recall the definition of Burger’s vector
of a dislocation �62�. Let C be a curve surrounding a dislo-
cation core P. Then,

�
C

n · dl = B, with B = Nd . �41�

The quantity B is called the Burger’s vector of the disloca-
tion �though it is a scalar quantity�. It is invariant with re-
spect to the path C that surrounds the core �see, e.g., de
Gennes and Prost �52�, p. 488�. Furthermore, d=2� /q de-
notes the layer thickness and the integer N represents the
number of layers gained or lost across P, as surrounded by C.
Note that since we are considering a smectic-A liquid crystal,
the director n coincides with the unit normal to the layers. In
general, if the curve C encloses several dislocations Pi, then
B=d�iNi, where Ni denotes the number of layers gained or
lost when circling around Pi. Imposing the smectic-A con-
straint ��=qn, it is useful to rewrite the line integral �41� as
follows:

�
C

�� · dl = 2�N ¬ ��� = qB , �42�

where ��� represents the total jump in � across the sample.
In order to enforce the bookshelf geometry, we consider a

smectic-A liquid crystal occupying the plane strip,

� = ��x,z�:0 � z � L, − d0 � x � d0� , �43�

with L�0 and d0�0 prescribed. We let the layers be parallel
to the z direction. Then, the fields

n = ex =
1

q
��, � = �0 � 0, s = s0 � 0 �44�

with q2= �b1� / �2b2�, and b1 ,b2 as in �10�, yield a homoge-
neous equilibrium state. We assume that an array of N	1
edge dislocations of core radius ��0 sits on the z axis, x
=0. We require that the total magnitude of the Burger’s vec-
tor is the prescribed quantity B, and let J=qB. We point out
that �=��x�=qx+const in the bulk, whereas �=��x ,z�
close to the dislocation cores. We further assume that n and
�� are parallel wherever they are defined.

We remark that the domain � is a cross section of a
three-dimensional domain with dislocation lines along the y
axis. The dislocation cores are thus assumed to be disks of
radii ��0 and centers Pi, with Pi corresponding to the inter-
sections of the dislocation lines with the xz plane.

A. Energy estimates

We now compute the total energy �8� in �. We are inter-
ested in the case ��L, so that the uniform bulk state prevails
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away from small circles of radii �. We assume that the region
� has an array of N	1 dislocations of radius ��0 placed
along the z axis, and derive an approximation to the total
energy depending on N and �. Finally, the energy minimiza-
tion provides us an estimate of the optimal values of the
number N and the core size �. In particular, we show that the
presence of the regularizing energy term implies N�1, pro-
vided the choice of J is such that more than one dislocation
may be formed.

Since the configurations that we deal with are planar, the
expression that we derive has dimensions of energy per unit
length �along the y direction�. We will subsequently proceed
to obtain a dimensionless energy expression. For the sake of
clarity, we now list the main simplifying assumptions of our
derivation.

�1� We assume that all dislocations have the same
strength. In other words, if we let P denote the center of the
dislocation core D located at �0,z�, we assume that

���0,z�� ª ���0,z + �� − ��0,z − ��� =
J

N
. �45�

�2� We assume that both the nematic and the smectic de-
gree of orders vanish within the dislocation cores. Thus, if
sd ,�d, respectively, denote the isotropic and smectic order
parameters in D, we assume that �sd��s0 and ��d���0.

�3� We adopt the 1-constant approximation K��Q�2 for
the nematic elastic energy �el,n.

�4� According to hypothesis �2�, we take Q=0 in �reg,
since this latter term must be taken into account only within
the dislocation core.

�5� The dominant terms close to the dislocations are �reg
and �el,sm, with

� �2�

�z2 � = O� ���
�2 � and � ��

�z
� = O� ���

�
� , �46�

for small ��0, where ��� denotes a jump in � across the
core.

Since b1�0 in the smectic phase and taking into account
that q2= �b1� / �2b2�, it is possible to rewrite �el,sm as

�el,sm = b2�����2 − q2�2 + constant �47�

and neglect the constant term.
Let us estimate separately each term of the total energy.

Note that there are bulk terms, accounting for the energy
away from the dislocation, and core terms that estimate the
energy in a circle of radius ��q−1 �see, e.g., �63� for a de-
tailed discussion of the free energy of the nematic core�:

�
�

�el,n  − KN ln��q� ,

�
�

�LdG  N�as0
2 − bs0

3 + cs0
4��2,

�
�

�el,sm  b2N� J2

N2�2 − q2�2

�2,

�
�

�sm  N�ã�0
2 + c̃�0

4��2,

�
�

�reg  DN
J2

N2�4�2 =
DJ2

N�2 ,

�
�

�n,sm
�1�  − Nb̃�0

2s0
2�2. �48�

We remark that �n,sm
�2� does not contribute to the energy since

f =0, and the term multiplying the parameter e vanishes as
well because of the smectic-A assumption, that is, �� is
taken to be an eigenvector of Q.

The approximation of the total energy is given by

Etot
0 ��,N� =

DJ2

N�2 + b2N� J2

N2�2 − q2�2

�2 − KN ln��q� + PBN�2,

�49�

where PB= �as0
2−bs0

3+cs0
4�+ �ã�0

2+ c̃�0
4�− b̃�0

2s0
2 denotes the

total bulk energy contribution away from the dislocation
cores. Since

dim�b2� = dim�D� = dim�KL2� = force � �length�2,

�50�

the following list of parameters is dimensionless:

� = �2q2,  = q2L2, � =
D

b2
,

K0 =
KL2

b2
, P =

2PBL2

q2b2
. �51�

The free energy in �49� has the dimensions of an energy per
unit length. Thus, to obtain a dimensionless form of the en-
ergy, we multiply Eq. �49� by L2 /b2 and define

Etot��,N� =
L2Etot

0

b2
=

�J2

�N
+ N� J2

N2�
− 1�2

�

+ PN� − K0N ln � . �52�

B. Number of defects

We now fix N	1, and determine the critical points of Etot
with respect to �. The stationarity equation ��Etot=0 requires

N4� + P��2 − K0N4� − J2�J2 + �N2� = 0. �53�

Equation �53� possesses a unique positive solution ��N�,
whose asymptotic behavior in the presence of many disloca-
tions is given by
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��N� =
K0

 + P
+

�J2

K0N2 + O� 1

N4� as N → � . �54�

The optimal radius tends to a constant, which does not de-
pend on the number of defects. The corresponding
asymptotic expression of the total energy is given by

Etot„��N�,N… = K0�1 − ln
K0

 + P
�N + O�N−2� �55�

as N→�. Thus, the free energy avoids an unbounded num-
ber of defects provided K0�e�+ P�. This inequality, which
is satisfied for physically realistic data as we discuss below,
expresses the dominance of smectic elasticity effects over the
nematic counterparts.

In order to estimate how the optimal value of N depends
on J and �, we now fix a list of physically realistic parameter
values. The ratio �= �K /b2�1/2 is the penetration length. It is
of the same order as the layer spacing and diverges near
when the system approaches the nematic-smectic transition
�see Kléman and Lavrentovich �64�, p. 145�. The list below
includes experimental values which describe the smectic-A
regime, away from the transition temperature to nematic. We
take L=10−3 m. This corresponds to the case when the length
of the sample is much greater than the interlayer spacing. We
then fix the following quantities:

�i� interlayer spacing d=2�q−1=1–3 nm,
�ii� nematic elastic constant K=10−11 N,
�iii� smectic elastic constant b2=106–107 N m−2,
�iv� penetration length �=108–109 mq−1.

These give the following values for the dimensionless pa-
rameter groups of the model: =q2L21012, K0=KL2 /b2
10−23.

Since K0 is much smaller than all the other dimensionless
groups entering the free energy, we may treat it as a pertur-
bative parameter. We define the optimal number of defects
Nopt as the number such that

� �Etot���N�,N�
�N

�
N=Nopt

= 0. �56�

A perturbative expansion of Eq. �56� allows to prove that

Nopt = J
P

�
+ O�K0� as K0 → 0. �57�

Equation �57� shows that the number of edge dislocations is
proportional to the total magnitude J of the Burger’s vector.
Moreover, it is kept bounded by the presence of the regular-
izing term �. Finally, the number of defects increases when
the bulk elastic terms �represented by P� are enhanced. In-
deed, it is a well-known fact that the bulk elasticity does
always promote the creation of a higher number of defects,
each of the lower allowed charge. We remark, however, that
if the number of defects becomes too large, the smectic order
itself melts and only the nematic order survives �62�. Our
approximations do not allow to investigate this latter effect,
since in the energy estimates �48� we have assumed that
smectic ordering is perfect away from the defect cores. This
assumption should be relaxed in order to determine how the
bulk smectic order parameter decreases when the number of
defects increases. If we finally replace the optimal number of
defects �57� in Eq. �54� we derive how the dislocation core
radius scales with the magnitude of the regularizing term

�opt =
�

P
+ O�K0� as K0 → 0. �58�

In view of the above considerations about the possible smec-
tic melting, the estimates �57� and �58� shall be trusted only
as long as Nopt is not too large or, alternatively, as long as �opt
is much smaller than the average defect distance.
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